

ISC Cloud First Program
Lunchtime Learning
March 23, 2017

Contents

- What is the cloud
- How did it come into existence
- Types of cloud service
- Advantages and Challenges
- ISC's Cloud First Program

"The Cloud"?

- Gmail, G+, Android
- Constant Contact / Mail Chimp
- Doodle
- SalesForce.com
- Box / Dropbox / Crashplan
- Facebook

3

- Office 365, Azure
- Amazon Web Services

Services provided through the internet

"The Cloud"?

- Systems connecting to a network were diagrammed with a 'cloud' shape
- Services offered through 'the internet' are 'cloud' services
- Any vendor providing services using the internet now has a 'cloud' service or offering
- Broadly 3 classes of services are recognized
 - Infrastructure as a service laaS
 - Platform as a service PaaS
 - Software as a service SaaS

Contents

- What is the cloud
- How did it come into existence
- Types of cloud service
- Advantages and Challenges
- Penn's approach to Cloud Computing

Contents

16

- What is the cloud
- How did it come into existence
- Types of cloud service
- Advantages and Challenges
- Penn's approach to Cloud Computing

Pizza as a Service *

On Premises

Dining Table

Soda

Gas / Electric

Oven

Fire

Pizza Dough

Toppings

Cheese

Tomato Sauce

Made at Home

Infrastructure as a Service (laaS)

Dining Table

Soda

Gas / Electric

Oven

Fire

Pizza Dough

Toppings

Cheese

Tomato Sauce

Take & Bake

Platform as a Service (PaaS)

Dining Table

Soda

Gas / Electric

Oven

Fire

Pizza Dough

Toppings

Cheese

Tomato Sauce

Delivery

Software as a Service (SaaS)

Dining Table

Soda

Gas / Electric

Oven

Fire

Pizza Dough

Toppings

Cheese

Tomato Sauce

Pizza Parlor

You Manage

Vendor Manages

^{*}Albe<u>rt Barron – IBM – https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service</u>

The Service Stack

On Premises

laaS

PaaS

SaaS

Application

Application Services

- Database
- Web Servers
- •Enterprise Bus

OS

Virtualization

Servers / Storage

Network

Data Center

Application

Application Services

- Database
- Web Servers
- •Enterprise Bus

OS

Virtualization

Servers / Storage

Network

Data Center

Application

Application Services

- Database
- Web Servers
- •Enterprise Bus

OS

Virtualization

Servers / Storage

Network

Data Center

Application

Application Services

- Database
- •Web Servers
- •Enterprise Bus

OS

Virtualization

Servers / Storage

Network

Data Center

Enablers

- Virtualization
 - Servers
 - Storage
- Increased Capacity
 - System Performance
 - Storage capacity, speed and size
 - Decreased power consumption
- Improved Internet Infrastructure
 - Bandwidth
 - Latency
- Distributed Computing
- Resource Abstraction

Contents

- What is the cloud
- How did it come into existence
- Types of cloud service
- Advantages and Challenges
- Penn's approach to Cloud Computing

Advantages

- Trade Capital Expense for Operational Expense
- Distributed Architectures made Easy
- Scalability is Built-In
- Decreased 'Time to Market'
- Fail early, Fail often
- Infrastructure Security vs. Application Security

CapEx vs. OpEx

Distributed Architectures

- Distributed Applications require a lot of plumbing
 - Geographically distributed data centers
 - Network connectivity
 - Replication
 - Load Balancing
 - Reliable storage
- Cloud vendors sweat the details
- Leverage scale to distribute costs needed

Distributed Architectures (example)

AWS Global Infrastructure

Scalability is Built-in

- Cloud vendor provides extensive virtualization
 - You never access any physical device
 - No rack and stack, physical restrictions, approval process
- Cloud vendor provides automated provisioning
 - Cloud vendor scale requires extensive automation
 - Monitoring, restart, recreate can all be automated
- Cloud vendor scale provides 'unlimited' growth
- Cloud vendor deals with millions of customers
- No need to purchase capital for your most successful case

Decreased 'Time to Market'

- No capital no procurement
- Most cloud solutions can be used instantly
 - Ample capacity available
- Most are pay as you go, no upfront cost
 - stop paying when you're done
- Allow extensive infrastructures stood up quickly
 - Some allow full automation of application stack
- No 3rd party negotiation
 - Hardware, possibly software

Fail early, Fail often

- No upfront capital investment
- Small scale is inexpensive
- Throw away anything that doesn't work
 - It's all virtual/at vendor anyway
 - No cost once removed
- Try new approaches and see what works
- Bring solutions back on premises
 - Legal, compliance, confidentiality or security requirement
 - Excess capacity

Infrastructure Security vs. Application Security

- Cloud vendors manage security for their services
 - Dedicated staff
 - Generally built securely from the ground up
 - Frequent patches and updates
- Easy to leverage cloud vendor's security
- Bespoke solutions are not part of that 'package'!
 - Use Penn advocated security standards
 - Understand the vendor's service and service levels

Challenges

- Variable Cost
- Development and Operational Paradigm Shift
- Privacy, Legal, Compliance
- Network Considerations
- Fluid space

Variable Cost

- Not always easy to predict
 - No one likes a budget that changes
- Turn off, or remove unused applications/data
- Try to understand your best case and worst case
- Realize that cloud costs are part of your operational costs, forever
- Big data vs. Data Obesity

Development and Operational Paradigm Shift

Use what was purchased efficiently

VS

- Build for elasticity
 - Develop for Elastic Infrastructure
 - DevOps takes a greater role
- Rip and Replace
 - Something always fails, just start new instance

Privacy, Legal, Compliance

- NSA
 - Nuff' said
- Strong Contracts and SLAs are paramount
 - Vendor deals with many customers, may not align with Penn's interests
- Use your Local Service Provider

http://www.upenn.edu/oacp/privacy/

http://www.upenn.edu/computing/security/index.php

http://www.upenn.edu/computing/security/cloud/index.php

Network Considerations

- Where is the service located
 - Physics still matter
 - Network topology matters
- Redundancy?
- Does the vendor charge for network ingress and egress to their service?
 - AWS!
- Confidentiality and Encryption

Fluid space

- Fail Early, Fail often!
 - Vendors will fail
 - http://www.wired.com/wiredenterprise/2013/09/nirvanix/
 - Vendors will change services quickly
- Decreased Time to Market!
 - Many startups
 - Consolidation is inevitable
- What's my Exit Process?
 - How fast can we get our own data back?
 - In a format that's usable without the vendor's product/service
- Big data and analytics will change services

Miscellaneous

- Rip and Replace
 - Herd versus Pets
- Cloud is green (http://cloudtimes.org/2012/10/28/how-green-is-cloud-computing-new-study/)
- New capabilities
 - 9-5 computing
 - Pilot light computing
 - DR on ice
- Big Data
- "Free"
 - http://blogs.law.harvard.edu/futureoftheinternet/2012/03/21/meme-patrol-when-something-online-is-free-youre-not-the-customer-youre-the-product/

Contents

36

- What is the cloud
- How did it come into existence
- Types of cloud service
- Advantages and Challenges
- ISC's Cloud First Program

Resistance Is Futile!

- The industry is moving rapidly to "IT As A Service"
- We will not have a choice in the future
- Penn is already moving in this direction
- We need to get good at this
- Big cultural change practice, practice, practice
- Speed, flexibility, agility

37

ISC's Cloud First Program

Vision

 To position Penn for the future of IT systems and services by pursuing a "Cloud First" strategy to accelerate the speed of delivery and to drive more value through technology to the Penn Community.

Goals

- Position Penn to thrive in the dramatically changing technological landscape – new learning and education delivery models, research models, security and business on demand.
- Provide new and innovative ways to deliver IT in support of Penn's mission, while leveraging industry solutions, in a way that provides scalability, agility, efficiency, staff development, and risk management.

ISC's Cloud First Program

Objectives

- Increase business application agility, scalability, and effectiveness
- Improve resource availability for higher value work
- Leverage currently available technology for greater efficiency
- Create a more predictable spending profile and total cost of ownership for technology
- Enable rapid and iterative improvements and replacement of technology

Metrics

- Cloud First: FY17 Q3 Q4
 - Move 75-100% of test & dev workloads
 - Move 25% of performance environments
 - Move 10% of production environments
 - Migrate 6-8 existing applications

Cloud Resources website

https://www.isc.upenn.edu/cloud-resources

- 250 links to a cloud resources grouped by category:
 - Planning & Strategies Planning guides and articles from Gartner, EDUCAUSE, Cloud Technology Partners
 - Technical Resources Application development, integration, agile development practices, infrastructure, security
 - Self-Directed Learning Cloud training and educational opportunities
 - Peer Institutions Materials and resources from peer institutions, EDUCAUSE, Internet2
 - Reference Glossaries, background materials, vendors, etc.

More Cloud 101

- On the Cloud Resources website
 - What is Cloud Computing?
 - 8-part series by Cloud Academy available on YouTube about cloud computing basics, including deployment models, key concepts, service models, common use cases, etc. (no charge)
 - Cloud Computing First Look
 - Course by David Rivers on Lynda.com explaining the essentials of cloud computing as well as an overview of migration and common cloud technologies (no charge for Lynda.com members)
 - Cloud Fundamentals
 - 19-part series produced by IT Pro TV; some knowledge of IT concepts needed (no charge for Amazon Prime Video members)

Resources

- Website
 - https://www.isc.upenn.edu/cloud-first
- Comments can be sent to
 - <u>cloud-first@isc.upenn.edu</u>

Questions

