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3Integration: What (review)

 Two primary flavors
 Authentication and authorization

• PennKey/SAML
• PennGroups
• Penn Community

 Application-specific data
• Data into applications (think student enrollment data into Canvas, or 

employee job data into KnowledgeLink)
• Data out of applications, to other applications or to reporting and 

analytics environments like the Data Warehouse



4Integration: Current State
 Primarily point-to-point integration between 

SaaS, hosted, on-prem solutions and/or 
data warehouse

 Variety of technical approaches
 PL/SQL / Oracle tool approaches
 Java / FAST / other development environments
 Mule / ESB
 Penn Community APIs

 In most cases, dependent on highly-skilled 
developers



5Integration: Goals
 Toolset that will accommodate
 Use by business analysts / non-programmers
 Support Warehouse needs
 Support SaaS implementations with support for data to/from 

on-prem sources
 Support Penn-developed applications
 Support intra-application integrations (B2B / SaaS-to-SaaS)

 Processes and documentation on standard usage for 
the tools we acquire

 Integration Service supporting needs across ISC and the 
University’s schools and centers



6Integration: work to date
 Lessons learned (nothing surprising)
 Most vendors of SaaS solutions we use don’t have great API/web 

service platforms
 RFI/RFP content for Penn-wide consumption
 ETL tool acquisition effort in progress
 Currently working on live proof-of-concept use cases with two 

vendors
 Both vendor solutions meet multiple needs which may provide 

integration solution(s) for cloud-based services
 Research into other integration directions
 iPaaS, mPaaS, xXaas . . .
 This is a rapidly evolving product space; evaluation pending 

available expertise/resources



7Today

 Why change so much?
 What’s our project?
 Updates and demos
 Technology Stack: Matt Schleindl
 Behavior and Test Driven Development: Sam Donnelly
 Agile Development: Lisa McBriar



8What goes into an app

 A user interface
What people see



9But there’s a lot more lurking…

…Technical Debt



10What goes into an app

 Business logic
Actual value



11What goes into an app

 AuthN and AuthZ
Security



12What goes into an app

 Persistence and data stores
Making it all matter



13What goes into an app

 Integration points
Playing well with others



14What goes into an app

 Testing
Proof it’s doing what it should be



15What goes into an app

 A source repository
Storage for code and config



16What goes into an app

 Deployment pipeline
Getting built and available



17What goes into an app

 A platform
Somewhere to run and scale



18That’s a lot of stuff

 User interface
 Business logic
 Authentication and security
 Persistence and data stores
 Integration points
 Testing
 Source repository
 Deployment pipeline
 Platform



19Until now…

 We’ve built these ourselves
 And VERY successfully so!
 Like many, many others
 With full control
 Minimal short-term risk
 One language
 Unique ISC terminology

 As 3-tier monolithic apps
FAST framework and LCF



20And for each one of those pieces…
We have to:

 Provide help, support, and examples
 Train and gain mindshare
 Build components and modules
 Maintain security
 Incorporate new technologies
 Innovate and revamp
 React to industry changes
 Test and roll out



21We can’t keep up

A handful of architects…

… as only a part of their responsibilities
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>



23Modern applications are…
 No longer self-

contained
 Think service areas
 Finance
 Student systems
 HR
 Research

 Composed of small 
pieces
 Reusable
 Built that way
 Deployed that way

Looser Coupling, More Flexible/Portable, More Complex Outer Architecture

Tighter Coupling, Less Flexible/Portable, Less Complex Outer Architecture
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24And each one is…
 Broken down even 

more
 An assembly of others’ 

work
 Open source
 Vendor products
 PaaS, SaaS, modules

 Small, disposable 
pieces
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25The result is a conscious choice
 We built these ourselves
 And VERY successfully so!
 Like many, many others
 Full control
 Minimal short term risk
 One language
 Unique ISC terminology

 Someone else built it
 And VERY successfully so!
 Like many, many others
 Less control
 More short-term risk
 More languages
 Common terminology
 More time spent on the parts 

people see, not frameworks!!!



26Working this way also means…
 New processes
 Agile development
 Automated testing
 Service-oriented delivery model
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement
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So what is this project?



28First of all… who:

 Tim Bouffard, Application Architect
 Sam Donnelly, Sr. Application Developer
 Bryan Hopkins, Sr. IT Project Leader
 Anome Mammes, Sr. Application Developer
 Lisa McBriar, Sr. Business Systems Analyst
 Matt Schleindl, Application Architect



29So… what is this project?
 Agile development
 Automated testing
 Service-oriented 

architecture
 Microservices
 DevOps
 Architecture lifecycle 

management
 Open source engagement

 User interface
 Business logic
 Authentication and security
 Persistence
 API platform
 Testing
 Source repository
 Deployment pipeline
 Platform and scaling



30So… what is this project?



31Work iteratively

Pull from Backlog

• Based on ISC 
priorities

Define Criteria

• Identify 
methodology

• Identify 
technologies

Build and Evaluate

• Hands-on 
experience

• Assign scores

Pilot(s)

• Best-of-breed 
implementation

• Test 
assumptions



32

Yeah but where are we now?



33Yeah but where are we now?

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh


34Results – UI Framework
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35Results – Server Framework
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36Results – Local Data Store
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37Details! Decisions…

 User interface: AngularJS + Bootstrap + Webpack

 Business logic: Django REST Framework + Zappa

 AuthN and security: NodeJS + ExpressJS + Passport-SAML

 Persistence: PostgreSQL



38Details! Placeholders…

 API platform: AWS API Gateway
 Backend testing: Django TestCase + Mocha + Chai
 UI testing: Selenium + Karma + Gherkin
 Source repository: Gitlab
 Deployment pipeline: Jenkins
 Testing automation: Jenkins
 Platform and scaling: AWS ECS + AWS Lambda
 Agile development: JIRA Agile Plugin + Kanban



39Not even started…

 Service-oriented architecture
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement
 More…



40

No more slides. Demos!
Technology Stack: Matt Schleindl

Behavior and Test Driven Development: Sam Donnelly
Agile Development: Lisa McBriar



41Comments/Questions

 Questions?
 Website: https://www.isc.upenn.edu/cloud-first
 Comments and suggestions for future topics can 

be sent to:
cloud-first@isc.upenn.edu

https://www.isc.upenn.edu/cloud-first
mailto:cloud-first@isc.upenn.edu
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