
Cloud First Application Development
Lunchtime Learning
December 8, 2016



2ISC’s Cloud First Program

Core Team
Application Design & Tools

Architecture, 
Infrastructure, & 

Migration
Integration

Communications & 
Engagement

Org 
Transformation 

Contracts & 
Procurement 

Security 

IAM

Funding & 
Finance

Client 
Engagement



3Integration: What (review)

 Two primary flavors
 Authentication and authorization

• PennKey/SAML
• PennGroups
• Penn Community

 Application-specific data
• Data into applications (think student enrollment data into Canvas, or 

employee job data into KnowledgeLink)
• Data out of applications, to other applications or to reporting and 

analytics environments like the Data Warehouse



4Integration: Current State
 Primarily point-to-point integration between 

SaaS, hosted, on-prem solutions and/or 
data warehouse

 Variety of technical approaches
 PL/SQL / Oracle tool approaches
 Java / FAST / other development environments
 Mule / ESB
 Penn Community APIs

 In most cases, dependent on highly-skilled 
developers



5Integration: Goals
 Toolset that will accommodate
 Use by business analysts / non-programmers
 Support Warehouse needs
 Support SaaS implementations with support for data to/from 

on-prem sources
 Support Penn-developed applications
 Support intra-application integrations (B2B / SaaS-to-SaaS)

 Processes and documentation on standard usage for 
the tools we acquire

 Integration Service supporting needs across ISC and the 
University’s schools and centers



6Integration: work to date
 Lessons learned (nothing surprising)
 Most vendors of SaaS solutions we use don’t have great API/web 

service platforms
 RFI/RFP content for Penn-wide consumption
 ETL tool acquisition effort in progress
 Currently working on live proof-of-concept use cases with two 

vendors
 Both vendor solutions meet multiple needs which may provide 

integration solution(s) for cloud-based services
 Research into other integration directions
 iPaaS, mPaaS, xXaas . . .
 This is a rapidly evolving product space; evaluation pending 

available expertise/resources



7Today

 Why change so much?
 What’s our project?
 Updates and demos
 Technology Stack: Matt Schleindl
 Behavior and Test Driven Development: Sam Donnelly
 Agile Development: Lisa McBriar



8What goes into an app

 A user interface
What people see



9But there’s a lot more lurking…

…Technical Debt



10What goes into an app

 Business logic
Actual value



11What goes into an app

 AuthN and AuthZ
Security



12What goes into an app

 Persistence and data stores
Making it all matter



13What goes into an app

 Integration points
Playing well with others



14What goes into an app

 Testing
Proof it’s doing what it should be



15What goes into an app

 A source repository
Storage for code and config



16What goes into an app

 Deployment pipeline
Getting built and available



17What goes into an app

 A platform
Somewhere to run and scale



18That’s a lot of stuff

 User interface
 Business logic
 Authentication and security
 Persistence and data stores
 Integration points
 Testing
 Source repository
 Deployment pipeline
 Platform



19Until now…

 We’ve built these ourselves
 And VERY successfully so!
 Like many, many others
 With full control
 Minimal short-term risk
 One language
 Unique ISC terminology

 As 3-tier monolithic apps
FAST framework and LCF



20And for each one of those pieces…
We have to:

 Provide help, support, and examples
 Train and gain mindshare
 Build components and modules
 Maintain security
 Incorporate new technologies
 Innovate and revamp
 React to industry changes
 Test and roll out



21We can’t keep up

A handful of architects…

… as only a part of their responsibilities



22

>



23Modern applications are…
 No longer self-

contained
 Think service areas
 Finance
 Student systems
 HR
 Research

 Composed of small 
pieces
 Reusable
 Built that way
 Deployed that way

Looser Coupling, More Flexible/Portable, More Complex Outer Architecture

Tighter Coupling, Less Flexible/Portable, Less Complex Outer Architecture

Monolithic App

Data Store

WAR/EAR

App Server

Microservices
Service A

Runtime

Data Store

Service B

Runtime

Data Store

Service C

Runtime

Data Store

Service D

Runtime

Data Store

Service E

Runtime

Data Store

Coarse-Grained Services

Data Store

App Server

Service
Domain

Service
Domain

Data
Store

Service
Domain

Runtime



24And each one is…
 Broken down even 

more
 An assembly of others’ 

work
 Open source
 Vendor products
 PaaS, SaaS, modules

 Small, disposable 
pieces

Automation

DevOps

Cloud-Ready/Cloud-Native PlatformAPI

Platform API

Policy
Management

Consumer
Identity
Provider

API Gateway

Build
Automation

Platform
Automation

Deployment
Automation

Adaptive
UI

Modularized
UI Components

Modularized
Client 
Application
Logic

JS
JS

JS
JS

Web Client

Persistence 
Services

Logging and
Diagnostics

Monitoring 
and Alerting

Security

Runtime
Management

Elastic
Scaling

?

Loosely Coupled
Services/Microservices Platform Capabilities

Service A

Instance 1

Instance n

Instance 1

Instance n

Service B

Load
Balancing



25The result is a conscious choice
 We built these ourselves
 And VERY successfully so!
 Like many, many others
 Full control
 Minimal short term risk
 One language
 Unique ISC terminology

 Someone else built it
 And VERY successfully so!
 Like many, many others
 Less control
 More short-term risk
 More languages
 Common terminology
 More time spent on the parts 

people see, not frameworks!!!



26Working this way also means…
 New processes
 Agile development
 Automated testing
 Service-oriented delivery model
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement



27

So what is this project?



28First of all… who:

 Tim Bouffard, Application Architect
 Sam Donnelly, Sr. Application Developer
 Bryan Hopkins, Sr. IT Project Leader
 Anome Mammes, Sr. Application Developer
 Lisa McBriar, Sr. Business Systems Analyst
 Matt Schleindl, Application Architect



29So… what is this project?
 Agile development
 Automated testing
 Service-oriented 

architecture
 Microservices
 DevOps
 Architecture lifecycle 

management
 Open source engagement

 User interface
 Business logic
 Authentication and security
 Persistence
 API platform
 Testing
 Source repository
 Deployment pipeline
 Platform and scaling



30So… what is this project?



31Work iteratively

Pull from Backlog

• Based on ISC 
priorities

Define Criteria

• Identify 
methodology

• Identify 
technologies

Build and Evaluate

• Hands-on 
experience

• Assign scores

Pilot(s)

• Best-of-breed 
implementation

• Test 
assumptions



32

Yeah but where are we now?



33Yeah but where are we now?

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh


34Results – UI Framework

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
Accessibility

Community and
Modules

Cost

Design for Cloud

Development
Process and toolsKey Capabilities

Operations

Resource Pool

Stability/Viability

AngularJS + Bootstrap + Yeoman
generator
Possible Points

ReactJS + Bootstrap + Webpack +
Yeoman generator + Redux



35Results – Server Framework

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Community and Modules

Cost

Data Store
Compatibility/Security

Design for Cloud

DevelopmentProcess and
Tools

IAM

Integration

Operations

Resource pool

Stability/Viability

Python + Django

Possible Points

NodeJS + ExpressJS



36Results – Local Data Store

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
Community and Modules

Cost

Design for Cloud

File Management

Key Capabilities

Operations

Resource pool

Stability/Viability

PostgreSQL
Possible Points
MongoDB



37Details! Decisions…

 User interface: AngularJS + Bootstrap + Webpack

 Business logic: Django REST Framework + Zappa

 AuthN and security: NodeJS + ExpressJS + Passport-SAML

 Persistence: PostgreSQL



38Details! Placeholders…

 API platform: AWS API Gateway
 Backend testing: Django TestCase + Mocha + Chai
 UI testing: Selenium + Karma + Gherkin
 Source repository: Gitlab
 Deployment pipeline: Jenkins
 Testing automation: Jenkins
 Platform and scaling: AWS ECS + AWS Lambda
 Agile development: JIRA Agile Plugin + Kanban



39Not even started…

 Service-oriented architecture
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement
 More…



40

No more slides. Demos!
Technology Stack: Matt Schleindl

Behavior and Test Driven Development: Sam Donnelly
Agile Development: Lisa McBriar



41Comments/Questions

 Questions?
 Website: https://www.isc.upenn.edu/cloud-first
 Comments and suggestions for future topics can 

be sent to:
cloud-first@isc.upenn.edu

https://www.isc.upenn.edu/cloud-first
mailto:cloud-first@isc.upenn.edu

	Cloud First Application Development
	ISC’s Cloud First Program
	Integration: What (review)
	Integration: Current State
	Integration: Goals
	Integration: work to date
	Today
	What goes into an app
	But there’s a lot more lurking…
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	That’s a lot of stuff
	Until now…
	And for each one of those pieces…
	We can’t keep up
	Slide Number 22
	Modern applications are…
	And each one is…
	The result is a conscious choice
	Working this way also means…
	Slide Number 27
	First of all… who:
	So… what is this project?
	So… what is this project?
	Work iteratively
	Slide Number 32
	Yeah but where are we now?
	Results – UI Framework
	Results – Server Framework
	Results – Local Data Store
	Details! Decisions…
	Details! Placeholders…
	Not even started…
	Slide Number 40
	Comments/Questions

